Basic Calculus Vocabulary

APTS 7

Useful word, Useful sentences and pronunciation help

(see the International Phonetic Alphabet on the last page)

■ Numbers

- x^2-3 reads "x squared minus three"/maines/. The opposite of 3 is -3 "negative three"
- 3×5 reads "3 *times* 5".
- x^3 reads "x to the third power" or simply "x to the third" or "x cubed".
- $x \le 4$ reads "x is less than or equal to 4".
- $x \ge 3.2$ reads "x is greater than or equal to 3 point 2".
- x>0 reads "x is *positive*"/'ppzitrv/ whereas x>0 reads "x is *nonnegative*".
- 0, 2, 4, 6, ... are *even* numbers whereas 1, 3, 5, 7... are *odd* numbers.
- The *interval* /'Interval/ [a, b) is the set of all real numbers x such that $a \le x < b$.

■ Functions / fʌŋkʃən/

- f(x) reads " $f \circ f x$ ".
- If we substitute 2 for x in f(x) we get f(2). /'shbstrtut, -tyut/
- Some quantities can be estimated /'ss.tə,meɪ tid/ from a graph of the function /græf, graf/
- If f is defined by $f: \begin{bmatrix} 2 \\ 5 \end{bmatrix} \to \mathbb{R}$ then $[2 \\ 5]$ is the **domain**, \mathbb{R} is the codomain and $[3 \\ 5]$ is

the range: The *range* /reindz/ is the set of all possible values of f(x) as x varies throughout the domain.

- If f satisfies f(-x)=f(x) for all x in its domain, then f is called an **even** function. The graph of an even function is **symmetric with respect to the y-axis**. /sr'mɛtrɪk/
- If f satisfies f(-x)=-f(x) for all x in its domain, then f is called an **odd** function. The graph of an odd function is **symmetric about the origin**. If we already have the graph of f for f for f obtain the entire graph by rotating through 180 about the origin.
- § Functions of the form f(x)=mx+p are called *linear*. There is a good reason for this: The graph of these functions are *(straight) lines*. m is the *slope* of the line and p is its *y-intercept* (=intersection with the y-axis).

■ Limit /'limit/

- $\lim_{x \to a} f(x)$ reads "limit of f of x as x approaches a"
- $\lim_{\substack{x \to a \\ x \to a}} f(x)$ reads "limit of f of x as x approaches a from the right"
- We will study vertical and horizontal asymptotes/'vartikal/ /hora'zontl, hor-/ /'æsim,tout/
- f is *continuous at* a number a if $\lim_{x \to a} f(x) = f(a)$ /kən'trn yu əs/

■ <u>Derivative</u> /dɪˈrɪvətɪv/

- You may use the derivative to determine whether a function *is increasing* or *decreasing*.
- The *tangent line* to y=f(x) at (a, f(a)) is the line through (a, f(a)) whose slope is equal to f'(a), the derivative of f at a.

■ Integrals /'Intigral/

• $\int_{a}^{x} f(x) dx$ reads "integral of f of x from a to b"

Problems

Exercise 1. Putting it all together (not too hard)

Sketch the graph of a function f(x) which has all of the following properties:

1.
$$\lim_{x \to 2^{-}} f(x) = -\infty$$

$$3. \lim_{x \to -\infty} f(x) = 0$$

5.
$$f(5) = 1$$

7.
$$f'(x) > 0$$
 if $x < -2$ or $x > 5$

9.
$$f'(5) = 0$$

$$2. \lim_{x \to 2^+} f(x) = \infty$$

4.
$$f(-2) = 2$$

6.
$$f(0) = 0$$

8.
$$f'(x) < 0$$
 if $-2 < x < 2$ or $2 < x < 5$

10.
$$f'(-2) = 0$$

♠ Exercise 2. Putting it all together (quite hard)

Sketch the graph of a function f(x) which has all of the following properties:

1.
$$f$$
 has domain $(-\infty, -2) \cup (-2, \infty)$

2.
$$f$$
 has range $(-5, \infty)$

3. The graph of
$$f$$
 has a vertical asymptote at $x = -2$

$$4. \quad \lim_{x \to -\infty} f(x) = 2$$

$$\lim_{x \to \infty} f(x) = -5$$

6.
$$\lim_{x \to 3} f(x) = 2$$

7.
$$f$$
 is discontinuous at $x=3$

8.
$$f'(x) > 0$$
 on $(-\infty, -2)$

9.
$$f'(x) < 0$$
 on $(-2,3)$

10.
$$f'(4)$$
 is not defined, but f is continuous at 4

<u>♠ Exercise 3</u>. Asymptotes /'æsim,tout/

Describe all vertical and horizontal asymptotes of $f(x) = \frac{3x^2 + 4x + 5}{\sqrt{16x^4 - 81}}$

♠ Exercise 4. Asymptotes /'æsɪm,tout/

Sketch the graph of an *odd* function with y=1, x=-4 and x=-1 among its asymptotes.

♠ Exercise 5. Continuity

 $g(x) = \begin{cases} x^2 - c^2 & \text{if } x < 4 \\ cx + 20 & \text{if } x \ge 4 \end{cases}$. Find the constant c that makes g continuous on $(-\infty, +\infty)$ and for this value of c, sketch the graph of g and determine whether there is a line tangent to y = g(x) at (4, g(4)).

★ Exercise 6.

A Tibetan monk leaves the monastery at 7:00 AM and takes his usual path to the top of the mountain, arriving at 7:00 PM. The following morning, he starts at 7:00 AM at the top and takes the same path back, arriving at the monastery at 7:00 PM. Use the Intermediate Value Theorem to prove that there is a point on the path that the monk will cross exactly at the same time on both days.

/tɪˈbɛt n/ /ˈmɒn əˌstɛr i/

★ Exercise 7. Optimization and fencing [Quite easy]

A farmer has a 2 400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

♠ Exercise 8. Calculus in England, Optimization [Not so easy]

No summer visit to London is complete without having lunch on sunny Goodge Street. There, for a mere pound coin, you can purchase the best fish and chips you've ever tasted from any one of a number of friendly street vendors. One of the reasons that the prices are so reasonable is that they give you no silverware, nor even a plate; they just roll up a piece of paper into a cone, and toss your food in. (They DO give you a little packet of vinegar, though.)

Neither a long, skinny cone nor a wide fat cone would hold enough fish and chips to make anybody happy. The vendors must be trained to roll a cone of the perfect size. Many students in the United States will never get a chance to see sunny Goodge Street, but by trying to solve the vendors' problem of optimizing the volume of a cone, we can feel as if we are there now.

For modeling purposes, assume that the piece of paper is a circle of radius 5, and that we are cutting a wedge out of it whose central angle is θ .

Find the value of θ that maximizes the volume of the cone. What is the maximum volume of the cone?

Sources: http://dictionary.reference.com, and Stewart Calculus textbook.

International Phonetic Alphabet: Pronunciation Key

In order to check the pronunciation of any word, you can go to http://www.reference.com/, type the word and then click on the microphone icon: The word will be read aloud to you.

Alternatively, you can learn to *read* the pronounciation symbols of the International Phonetic Alphabet (IPA) using the explanations below:

Stress marks: /'/ indicates primary stressed syllable follows; / / indicates secondary stressed syllable follows, as in news pa per / 'nuz per per/and in for ma tion / in fer mer [en/

CONSONANTS VOWELS				
	/b/	boy, baby, rob	/æ/	apple, can, hat
	/d/	do, ladder, bed	/eɪ/	aid, hate, day
	/dʒ/	jump, budget, age	/a/	arm, father, aha
	/f/	food, offer, safe	/εər/	air, careful, wear
	/g/	get, bigger, dog	/ɔ/	all, or, talk, lost, saw
	/ b/	happy, ahead	/aʊər/	
	/k/	can, speaker, stick	/ε/	ever, head, get
	/\/	let, follow, still	/i/	eat, see, need
		make, summer, time		ear, hero, beer
	/m/ /n/	no, dinner, thin	/ıər/ /ər/	teacher, afterward, murderer
	/ŋ/	singer, think, long	/3r/	early, bird, stirring
	/p/	put, apple, cup	/1/	it, big, finishes
	/r/	run, marry, far, store	/aɪ/	I, ice, hide, deny
	/s/	sit, city, passing, face	/aɪər/	fire, tired
	/ʃ/	she, station, push	/ulo./	odd, hot, waffle
	/t/	top, better, cat	/oʊ/	owe, road, below
	/tʃ/	church, watching, nature, witch	/u/	ooze, food, soup, sue
	/0/	thirsty, nothing, math	/ប/	good, book, put
	/ð/	this, mother, breathe	/ J I/	oil, choice, toy
	/v/	very, seven, love	/aʊ/	out, loud, how
	/w/	wear, away	/ ^ /	up, mother, mud
	/ ^h w/	where, somewhat	/ə/	about, animal, problem, circ
	/y/	yes, onion		
	/z/	zoo, easy, buzz	Source:	: www.reference.com/
	/3/	measure, television, beige	псер.//	······································

Teachers corner, useful sentences

- Graph a function on the board and have students call out rough estimates of the derivatives.
- Have the students work on this in groups of 3 or 4.
- It is crucial that students discuss problem 4.
- What would f'(a) mean in real terms in this instance?